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PREFACE

Wigner’s quasi-probability distribution function in phase-space is a special (Weyl-

Wigner) representation of the density matrix. It has been useful in describing transport in

quantum optics; nuclear physics; and quantum computing, decoherence, and chaos. It is

also of importance in signal processing, and the mathematics of algebraic deformation. A re-

markable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged

in the last quarter-century: It furnishes a third, alternative, formulation of quantum me-

chanics, independent of the conventional Hilbert space, or path integral formulations.

In this logically complete and self-standing formulation, one need not choose sides be-

tween coordinate or momentum space. It works in full phase-space, accommodating the

uncertainty principle; and it offers unique insights into the classical limit of quantum the-

ory: The variables (observables) in this formulation are c-number functions in phase space

instead of operators, with the same interpretation as their classical counterparts, but are

composed together in novel algebraic ways.

This volume is a selection of 25 useful papers in the phase-space formulation, with an

introductory overview which provides a trail-map to these papers, and an extensive bibliog-

raphy. (Still, the bibliography makes no pretense to exhaustiveness. An up-to-date database

on the large literature of the field, with special emphasis on its mathematical and technical

aspects, may be found in http://idefix.physik.uni-freiburg.de/∼star/en/download.html .)

The overview collects often-used formulas and simple illustrations, suitable for appli-

cations to a broad range of physics problems, as well as teaching. As a concise treatise,

it provides supplementary material which may be used for a beginning graduate course in

quantum mechanics.

D Morrissey is thanked for helpful comments, and T Curtright expresses his obligation

to Ms Diaz-Heimer.

Errata and other updates to the book may be found on-line at

http://server.physics.miami.edu/∼curtright/QMPS

C. K. Zachos, D. B. Fairlie, and T. L. Curtright
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OVERVIEW OF PHASE-SPACE QUANTIZATION

0.1 Introduction

There are at least three logically autonomous alternative paths to quantization. The first is

the standard one utilizing operators in Hilbert space, developed by Heisenberg, Schrödinger,

Dirac, and others in the 1920s. The second one relies on path integrals, and was conceived

by DiracDir33 and constructed by Feynman.

The third one (the bronze medal!) is the phase-space formulation surveyed in this

book. It is based on Wigner’s (1932) quasi-distribution functionWig32 and Weyl’s (1927)

correspondenceWey27 between ordinary c-number functions in phase space and quantum-

mechanical operators in Hilbert space.

The crucial quantum-mechanical composition structure of all such functions, which relies

on the ⋆-product, was fully understood by Groenewold (1946)Gro46, who, together with

Moyal (1949)Moy49 , pulled the entire formulation together. Still, insights on interpretation

and a full appreciation of its conceptual autonomy took some time to mature with the work

of, among others, TakabayasiTak54, BakerBak58, and FairlieFai64.

This complete formulation is based on the Wigner function (WF), which is a quasi-

probability distribution function in phase-space,

f(x, p) =
1

2π

∫

dy ψ∗
(

x− ~

2
y

)

e−iypψ

(

x+
~

2
y

)

. (1)

It is a generating function for all spatial autocorrelation functions of a given quantum-

mechanical wave-function ψ(x). More importantly, it is a special representation of the

density matrix (in the Weyl correspondence, as detailed in Section 0.12).

Alternatively, in a 2n-dimensional phase space, it amounts to

f(x, p) =
1

(2π~)n

∫

dny
〈

x+
y

2

∣

∣

∣
ρ

∣

∣

∣
x− y

2

〉

e−ip·y/~, (2)

where ψ(x) = 〈x|ψ〉 in the density operator ρ,

ρ =

∫

dnz

∫

dnxdnp
∣

∣

∣
x+

z

2

〉

f(x, p) eip·z/~
〈

x− z

2

∣

∣

∣
. (3)

There are several outstanding reviews on the subject: refsHOS84,Tak89,Ber80,BJ84,Lit86,
deA98,Shi79,Tat83,Coh95,KN91,Kub64,DeG74,KW90, Ber77,Lee95,Dah01,Sch02,DHS00,CZ83,Gad95,HH02,
Str57,McD88,Leo97,Sny80,Bal75,BFF78.

Nevertheless, the central conceit of the present overview is that the above input wave-

functions may ultimately be bypassed, since the WFs are determined, in principle, as the

solutions of suitable functional equations in phase space. Connections to the Hilbert space

operator formulation of quantum mechanics may thus be ignored, in principle—even though

they are provided in Section 0.12 for pedagogy and confirmation of the formulation’s equiv-

alence. One might then envision an imaginary world in which this formulation of quantum

mechanics had preceded the conventional Hilbert-space formulation, and its own techniques
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and methods had arisen independently, perhaps out of generalizations of classical mechanics

and statistical mechanics.

It is not only wave-functions that are missing in this formulation. Beyond the ubiq-

uitous (noncommutative, associative, pseudodifferential) operation, the ⋆-product, which

encodes the entire quantum-mechanical action, there are no linear operators. Expectations

of observables and transition amplitudes are phase-space integrals of c-number functions,

weighted by the WF, as in statistical mechanics.

Consequently, even though the WF is not positive-semidefinite (it can be, and usually is

negative in parts of phase-space Wig32), the computation of expectations and the associated

concepts are evocative of classical probability theory, as emphasized by Moyal. Still, telltale

features of quantum mechanics are reflected in the noncommutative multiplication of such

c-number phase-space functions through the ⋆-product, in systematic analogy to operator

multiplication in Hilbert space.

This formulation of quantum mechanics is useful in describing quantum trans-

port processes in phase space, notably in quantum opticsSch02,Leo97,SM00; nuclear and

particle physicsBak60,SP81,WH99,MM84,CC03,BJY 04; condensed matter DO85,MMP94,DBB02

KKFR89,JG93,BP96,Ram04,KL01,JBM03; the study of semiclassical limits of mesoscopic systems
Imr67,OR57,Sch69,Ber77,KW87,OM95,MS95,MOT98,V or89,V o78,Hel76,Wer95,Ara95,Mah87,Rob93,CdD04,
Pul06,Zdn06; and the transition to classical statistical mechanicsV MdG61,JD99,F re87,
BD98,Dek77,Raj83,HY 96,CV 98,SM00,FLM98,FZ01,Zal03,CKTM07.

Since observables are expressed by essentially common variables in both their

quantum and classical configurations, this formulation is the natural language in

which to investigate quantum signatures of chaosHW80,GHSS05,MNV 08,CSA09,Haa10 and

decoherenceBer77,JN90,Zu91,ZP94,Hab90,BC99,KZZ02,KJ99,FBA96,Kol96,GH93,CL03,BTU93,Mon94,
HP03,OC03,BC09,GB03,MMM11 (of utility in, e.g., quantum computingBHP02,MPS02,TGS05).

It likewise provides crucial intuition in quantum-mechanical

interference problemsWis97,Son09, molecular Talbot-Lau interferometryNH08, probability

flows as negative probability backflowsBM94,FMS00,BV 90, and measurements of atomic

systemsSmi93,Dun95,Lei96,KPM97,Lvo01,JS02,BHS02,Ber02,Cas91.

The intriguing mathematical structure of the formulation is of relevance to Lie

AlgebrasFFZ89; martingales in turbulenceFan03; and string field theoryBKM03. It has also

been retrofitted into M-theory and quantum field theory advances linked to noncommutative

geometrySW99,F il96 (for reviews, see Cas00,Har01,DN01,HS02), and to matrix modelsTay01,KS02;

these apply spacetime uncertainty principlesPei33,Y o89,JY 98,SST00 reliant on the ⋆-product.

(Transverse spatial dimensions act formally as momenta, and, analogously to quantum me-

chanics, their uncertainty is increased or decreased inversely to the uncertainty of a given

direction.)
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As a significant aside, in formal emulation of quantum mechanics,V ill48 the WF has ex-

tensive practical applications in signal processing, filtering, and engineering (time-frequency

analysis), since, mathematically, time and frequency constitute a pair of Fourier-conjugate

variables, just like the x and p pair of phase spacea.

For simplicity, the formulation will be mostly illustrated here for one coordi-

nate and its conjugate momentum; but generalization to arbitrary-sized phase spaces

is straightforwardBal75,DM86, including infinite-dimensional ones, namely scalar field

theoryDit90,Les84,Na97,CZ99,CPP01,MM94: the respective WFs are simple products of single-

particle WFs.

0.2 The Wigner Function

As already indicated, the quasi-probability measure in phase space is the WF,

f(x, p) =
1

2π

∫

dy ψ∗
(

x− ~

2
y

)

e−iyp ψ

(

x+
~

2
y

)

. (4)

It is obviously normalized,
∫

dpdxf(x, p) = 1, for normalized input wavefunctions. In

the classical limit, ~ → 0, it would reduce to the probability density in coordinate space,

x, usually highly localized, multiplied by δ-functions in momentum: in phase space, the

classical limit is “spiky” and certain!

This expression has more x−p symmetry than is apparent, as Fourier transformation to

momentum-space wave-functions yields a completely symmetric expression with the roles

of x and p reversed, and, upon rescaling of the arguments x and p, a symmetric classical

limit.

The WF is also manifestly realb. It is further constrainedBak58 by the Cauchy-Schwarz

inequality to be bounded: − 2
h ≤ f(x, p) ≤ 2

h . Again, this bound disappears in the spiky

classical limit. Thus, this quantum-mechanical bound precludes a WF which is a perfectly

localized delta function in x and p—the uncertainty principle.

Respectively, p- or x-projection leads to marginal probability densities: a spacelike

shadow
∫

dp f(x, p) = ρ(x), or else a momentum-space shadow
∫

dxf(x, p) = σ(p). Either

is a bona-fide probability density, being positive semidefinite. But these potentialities are

actually interwoven. Neither can be conditioned on the other, as the uncertainty principle

is fighting back: The WF f(x, p) itself can, and most often is negative in some small areas

of phase-spaceWig32,HOS84,MLD86. This is illustrated below, and furnishes a hallmark of

aThus, time-varying signals are best represented in a WF as time-varying spectrograms, analogously to a music score,
i.e. the changing distribution of frequencies is monitored in timedeB67,BBL80,Wok97,QC96,MH97,Coh95,Gro01,F la99 :
even though the description is constrained and redundant, it furnishes an intuitive picture of the signal which a mere
time profile or frequency spectrogram fails to convey.

Applications aboundCGB91,Lou96,MH97 in bioengineering, acoustics, speech analysis, vision processing, radar imag-
ing, turbulence microstructure analysis, seismic imagingWL10, and the monitoring of internal combustion engine-
knocking, failing helicopter-component vibrations, atmospheric radio occultationsGLL10 and so on.
bIn one space dimension, by virtue of non-degeneracy, ψ has the same effect as ψ∗, and f turns out to be p-even; but
this is not a property used here.
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QM interference in this language. Such negative features thus serve to monitor quantum

coherence; and their attenuation, respectively, its loss. (In fact, the only pure state WF

which is non-negative is the GaussianHud74, a state of maximum entropyRaj83.)

The counter-intuitive “negative probability” aspects of this quasi-probability distri-

bution have been explored and interpreted Bar45,F ey87,BM94,MLD86 (for a popular re-

view, see LPM98). For instance, negative probability flows may be regarded as legiti-

mate probability backflows in interesting settingsBM94. Nevertheless, the WF for atomic

systems can still be measured in the laboratory, albeit indirectly, and reconstructed
Smi93,Dun95,Lei96,KPM97,Lvo01,Lut96,BAD96,BHS02,Ber02,BRWK99,V og89 .

Smoothing f by a filter of size larger than ~ (e.g., convolving with a phase-space Gaus-

sian) necessarily results in a positive-semidefinite function, i.e. it may be thought to have

been smeared or blurred to a classicalc distributiondeB67,Car76,Ste80,OW81,Raj83.

It is thus evident that phase-space patches of uniformly negative value for f cannot be

larger than a few ~, since, otherwise, smoothing by such an ~-filter would fail to obliterate

them as required above. That is, negative patches are small, a microscopic phenomenon,

in general, in some sense shielded by the uncertainty principle. Monitoring negative WF

features and their attenuation in time (as quantum information leaks into the environment)

affords a measure of decoherence and drift towards a classical (mixed) stateKJ99.

Among real functions, the WFs comprise a rather small, highly constrained, set. When

is a real function f(x, p) a bona-fide, pure-state, Wigner function of the form (4)? Evidently,

when its Fourier transform (the cross-spectral density) “left-right” factorizes,

f̃(x, y) =

∫

dp eipyf(x, p) = g∗L(x− ~y/2) gR(x+ ~y/2) . (5)

That is,

∂2 ln f̃

∂(x− ~y/2) ∂(x+ ~y/2)
= 0 , (6)

so that, for real f , gL = gR.

Nevertheless, as indicated, the WF is a distribution function, after all: it provides

the integration measure in phase space to yield expectation values of observables from

cThis one is called the Husimi distributionTak89,TA99 , and sometimes information scientists examine it preferentially
on account of its non-negative feature. Nevertheless, it comes with a substantially heavy price, as it needs to be
“dressed” back to the WF, for all practical purposes, when equivalent quantum expectation values are computed with
it: i.e., unlike the WF, it does not serve as an immediate quasi-probability distribution with no further measure (see
Section 0.13). The negative feature of the WF is, in the last analysis, an asset, and not a liability, and provides an
efficient description of “beats”BBL80,Wok97,QC96,MH97,Coh95 , cf. Fig. 1.
Caution: If, instead, strictly inequivalent expectation values were taken with the Husimi distribution without the
requisite dressing of Section 0.13, i.e. improperly, as though it were a bona-fide probability distribution, such ex-
pectation values would actually reflect loss of quantum information: they would represent semi-classically smeared
observablesWO87.
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x

p

f

Figure 1. Wigner function of a pair of Gaussian wavepackets centered at x = ±a:

f(x, p; a) = exp(−(x2 + p2))(exp(−a2) cosh(2ax) + cos(2pa))/(π(1 + e−a2

)). (For simplicity, ~ = 1 here. The

corresponding wave-function is ψ (x; a) =
“

exp
“

− (x+ a)2 /2
”

+ exp
`

−(x− a)2/2
´

”

/(π1/4
p

2 + 2e−a2).) Here,

a = 6 is chosen, quite larger than the width of the Gaussians. Note the phase-space interference structure (“beats”)
with negative values in the x region between the two packets where there is no wave-function support—hence vanishing
probability for the presence of the particle. The oscillation frequency in the p-direction is a/π. Thus, it increases with
growing separation a, ultimately smearing away the interference structure.
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corresponding phase-space c-number functions. Such functions are often familiar classi-

cal quantities; but, in general, they are uniquely associated to suitably ordered operators

through Weyl’s correspondence ruleWey27. Given an operator (in gothic script) ordered in

this prescription,

G(x, p) =
1

(2π)2

∫

dτdσdxdp g(x, p) exp(iτ(p − p) + iσ(x − x)) , (7)

the corresponding phase-space function g(x, p) (the Weyl kernel function, or the Wigner

transform of that operator) is obtained by

p 7−→ p, x 7−→ x . (8)

That operator’s expectation value is then given by a “phase-space average” Gro46,Moy49,Bas48,

〈G〉 =

∫

dxdp f(x, p) g(x, p). (9)

The kernel function g(x, p) is often the unmodified classical observable expression, such

as a conventional Hamiltonian, H = p2/2m + V (x), i.e. the transition from classical me-

chanics is straightforward (“quantization”).

However, the kernel function contains ~ corrections when there are quantum-mechanical

ordering ambiguities in the observables, such as in the kernel of the square of the angular

momentum, L · L. This one contains an additional term −3~
2/2 introduced by the Weyl

orderingShe59,DS82,DS02, beyond the mere classical expression, L2. In fact, with suitable

averaging, this quantum offset accounts for the nontrivial angular momentum L = ~ of the

ground-state Bohr orbit, when the standard Hydrogen quantum ground state has vanishing

〈L · L〉 = 0.

In such cases (including momentum-dependent potentials), even nontrivial O(~) quan-

tum corrections in the phase-space kernel functions (which characterize different opera-

tor orderings) can be produced efficiently without direct, cumbersome consideration of

operatorsCZ02,Hie84. More detailed discussion of the Weyl and alternate correspondence

maps is provided in Sections 0.12 and 0.13.

In this sense, expectation values of the physical observables specified by kernel functions

g(x, p) are computed through integration with the WF, f(x, p), in close analogy to classical

probability theory, except for the non-positive-definiteness of the distribution function. This

operation corresponds to tracing an operator with the density matrix (cf. Section 0.12).

0.3 Solving for the Wigner Function

Given a specification of observables, the next step is to find the relevant WF for a given

Hamiltonian. Can this be done without solving for the Schrödinger wavefunctions ψ, i.e.

not using Schrödinger’s equation directly? Indeed, the functional equations which f satisfies

completely determine it.
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Firstly, its dynamical evolution is specified by Moyal’s equation. This is the extension

of Liouville’s theorem of classical mechanics, for a classical Hamiltonian H(x, p), namely

∂tf + {f,H} = 0, to quantum mechanics, in this languageWig32,Bas48,Moy49:

∂f

∂t
=
H ⋆ f − f ⋆ H

i~
≡ {{H, f}} , (10)

where the ⋆-productGro46 is

⋆ ≡ e
i~
2

(
←

∂ x

→

∂ p−
←

∂ p

→

∂ x) . (11)

The right-hand side of (10) is dubbed the “Moyal Bracket” (MB), and the quantum

commutator is its Weyl-correspondent (its Weyl transform). It is the essentially unique

one-parameter (~) associative deformation (expansion) of the Poisson Brackets (PB) of

classical mechanicsV ey75,BFF78,FLS76,Ar83,F le90,deW83,BCG97,TD97. Expansion in ~ around 0

reveals that it consists of the Poisson Bracket corrected by terms O(~).

Moyal’s equation equation (10) also evokes Heisenberg’s equation of motion for operators

(and von Neumann’s for the density matrix), except H and f here are ordinary “classical”

phase-space functions, and it is the ⋆-product which now enforces noncommutativity. This

language, then, makes the link between quantum commutators and Poisson Brackets more

transparent.

Since the ⋆-product involves exponentials of derivative operators, it may be evaluated

in practice through translation of function arguments (“Bopp shifts”),

Lemma 0.1

f(x, p) ⋆ g(x, p) = f

(

x+
i~

2

→
∂ p, p−

i~

2

→
∂ x

)

g(x, p). (12)

The equivalent Fourier representation of the ⋆-product isNeu31,Bak58

f ⋆ g =
1

~2π2

∫

dp′dp′′dx′dx′′ f(x′, p′) g(x′′, p′′)

× exp

(−2i

~

(

p(x′ − x′′) + p′(x′′ − x) + p′′(x− x′)
)

)

. (13)

An alternate integral representation of this product isHOS84

f⋆g = (~π)−2

∫

dp′dp′′dx′dx′′ f(x+x′, p+p′) g(x+x′′, p+p′′) exp

(

2i

~

(

x′p′′ − x′′p′
)

)

, (14)

which readily displays noncommutativity and associativity.

A fundamental Theorem (0.1) examined later dictates that ⋆-multiplication of c-

number phase-space functions is in complete isomorphism to Hilbert-space operator

multiplicationGro46 of the respective Weyl transforms,

A(x, p) B(x, p) =
1

(2π)2

∫

dτdσdxdp (a ⋆ b) exp(iτ(p − p) + iσ(x − x)). (15)
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The cyclic phase-space trace is directly seen in the representation (14) to reduce to a

plain product, if there is only one ⋆ involved,

Lemma 0.2
∫

dpdx f ⋆ g =

∫

dpdx fg =

∫

dpdx g ⋆ f. (16)

Moyal’s equation is necessary, but does not suffice to specify the WF for a system. In

the conventional formulation of quantum mechanics, systematic solution of time-dependent

equations is usually predicated on the spectrum of stationary ones. Time-independent pure-

state Wigner functions ⋆-commute with H; but, clearly, not every function ⋆-commuting

with H can be a bona-fide WF (e.g., any ⋆-function of H will ⋆-commute with H).

Static WFs obey even more powerful functional ⋆-genvalue equationsFai64 (also see
Bas48,Kun67,Coh76,Dah83),

H(x, p) ⋆ f(x, p) = H

(

x+
i~

2

→
∂ p , p− i~

2

→
∂ x

)

f(x, p)

= f(x, p) ⋆ H(x, p) = E f(x, p) , (17)

where E is the energy eigenvalue of Hψ = Eψ in Hilbert space. These amount to a

complete characterization of the WFsCFZ98. (NB. Observe the ~ → 0 transition to the

classical limit.)

Lemma 0.3 For real functions f(x, p), the Wigner form (4) for pure static eigenstates is

equivalent to compliance with the ⋆-genvalue equations (17) (ℜ and ℑ parts).

Proof

H(x, p) ⋆ f(x, p) =

=
1

2π

(

(p − i
~

2

→
∂ x)

2/2m+ V (x)

)
∫

dy e−iy(p+i
~

2

←

∂ x)ψ∗(x− ~

2
y) ψ(x+

~

2
y)

=
1

2π

∫

dy

(

(p− i
~

2

→
∂ x)

2/2m+ V (x+
~

2
y)

)

e−iypψ∗(x− ~

2
y) ψ(x+

~

2
y)

=
1

2π

∫

dy e−iyp
(

(i
→
∂ y +i

~

2

→
∂ x)

2/2m+ V (x+
~

2
y)

)

ψ∗(x− ~

2
y) ψ(x+

~

2
y)

=
1

2π

∫

dy e−iypψ∗(x− ~

2
y) E ψ(x+

~

2
y)

= E f(x, p). (18)

Action of the effective differential operators on ψ∗ turns out to be null.

Symmetrically,

f ⋆ H =

=
1

2π

∫

dy e−iyp
(

− 1

2m
(
→
∂ y −

~

2

→
∂ x)

2 + V (x− ~

2
y)

)

ψ∗(x− ~

2
y) ψ(x+

~

2
y)

= E f(x, p), (19)
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where the action on ψ is now trivial.

Conversely, the pair of ⋆-eigenvalue equations dictate, for f(x, p) =
∫

dy e−iypf̃(x, y) ,
∫

dy e−iyp
(

− 1

2m
(
→
∂ y ±

~

2

→
∂ x)

2 + V (x± ~

2
y) − E

)

f̃(x, y) = 0. (20)

Hence, real solutions of (17) must be of the form

f =
∫

dy e−iypψ∗(x− ~

2y)ψ(x+ ~

2y)/2π, such that Hψ = Eψ.

The eqs (17) lead to spectral properties for WFsFai64,CFZ98, as in the Hilbert space

formulation. For instance, projective orthogonality of the ⋆-genfunctions follows from asso-

ciativity, which allows evaluation in two alternate groupings:

f ⋆ H ⋆ g = Ef f ⋆ g = Eg f ⋆ g. (21)

Thus, for Eg 6= Ef , it is necessary that

f ⋆ g = 0. (22)

Moreover, precluding degeneracy (which can be treated separately), choosing f = g above

yields,

f ⋆ H ⋆ f = Ef f ⋆ f = H ⋆ f ⋆ f, (23)

and hence f ⋆ f must be the stargenfunction in question,

f ⋆ f ∝ f. (24)

Pure state fs then ⋆-project onto their space.

In general, the projective property for a pure state can be shownTak54,CFZ98,

Lemma 0.4

fa ⋆ fb =
1

h
δa,b fa . (25)

The normalization mattersTak54: despite linearity of the equations, it prevents naive super-

position of solutions. (Quantum mechanical interference works differently here, in compor-

tance with conventional density-matrix formalism.)

By virtue of (16), for different ⋆-genfunctions, the above dictates that
∫

dpdx fg = 0. (26)

Consequently, unless there is zero overlap for all such WFs, at least one of the two must go

negative someplace to offset the positive overlap HOS84,Coh95—an illustration of the salutary

feature of negative-valuedness. Here, this feature is an asset and not a liability.

Further note that integrating (17) yields the expectation of the energy,
∫

H(x, p)f(x, p) dxdp = E

∫

f dxdp = E. (27)
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N.B. Likewised, integrating the above projective condition yields
∫

dxdp f2 =
1

h
, (28)

which goes to a divergent result in the classical limit, for unit-normalized fs, as the pure-

state WFs grow increasingly spiky.

0.4 The Uncertainty Principle

In classical (non-negative) probability distribution theory, expectation values of non-

negative functions are likewise non-negative, and thus yield standard constraint inequalities

for the constituent pieces of such functions, such as, e.g., moments of the variables.

But it was just discussed that, for WFs which go negative for an arbitrary function g, the

expectation 〈|g|2〉 need not be ≥ 0. This can be easily illustrated by choosing the support

of g to lie mostly in those (small) regions of phase-space where the WF f is negative.

Still, such constraints are not lost for WFs. It turns out they are replaced by

Lemma 0.5

〈g∗ ⋆ g〉 ≥ 0 . (29)

In Hilbert space operator formalism, this relation would correspond to the positivity of

the norm. This expression is non-negative because it involves a real non-negative integrand

for a pure state WF satisfying the above projective conditione,
∫

dpdx(g∗⋆g)f = h

∫

dxdp(g∗⋆g)(f ⋆f) = h

∫

dxdp(f ⋆g∗)⋆(g⋆f) = h

∫

dxdp|g⋆f |2. (30)

To produce Heisenberg’s uncertainty relationCZ01, one now only need choose

g = a+ bx+ cp , (31)

for arbitrary complex coefficients a, b, c.

The resulting positive semi-definite quadratic form is then

a∗a+b∗b〈x⋆x〉+c∗c〈p⋆p〉+(a∗b+b∗a)〈x〉+(a∗c+c∗a)〈p〉+c∗b〈p⋆x〉+b∗c〈x⋆p〉 ≥ 0 , (32)

for any a, b, c. The eigenvalues of the corresponding matrix are then non-negative, and thus

so must be its determinant. Given

x ⋆ x = x2, p ⋆ p = p2, p ⋆ x = px− i~/2 , x ⋆ p = px+ i~/2 , (33)

dThis discussion applies to proper WFs, corresponding to pure states’ density matrices. E.g., a sum of two WFs
similar to a sum of two classical distributions is not a pure state in general, and does not satisfy the condition (6).
For such mixed-state generalizations, the impurity isGro46 1 − h〈f〉 =

R

dxdp (f − hf2) ≥ 0, where the inequality
is only saturated into an equality for a pure state. For instance, for w ≡ (fa + fb)/2 with fa ⋆ fb = 0, the impurity
is nonvanishing,

R

dxdp (w − hw2) = 1/2. A pure state affords a maximum of information, while the impurity is
a measure of lack of informationF an57,Tak54, characteristic of mixed states and decoherenceCSA09,Haa10—it is the
dominant term in the expansion of the quantum entropy around a pure stateBra94.
eSimilarly, if f1 and f2 are pure state WFs, the transition probability (|

R

dxψ∗
1
(x)ψ2(x)|2) between the respective

states is also non-negativeOW81 , manifestly by the same argumentCZ01, providing for a non-negative phase-space
overlap,

R

dpdxf1f2 = (2π~)2
R

dxdp |f1 ⋆ f2|2 ≥ 0.
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and the usual quantum fluctuations

(∆x)2 ≡ 〈(x− 〈x〉)2〉, (∆p)2 ≡ 〈(p− 〈p〉)2〉, (34)

this condition on the 3 × 3 matrix determinant simply amounts to

(∆x)2 (∆p)2 ≥ ~
2/4 +

(

〈(x− 〈x〉)(p − 〈p〉)〉
)2
, (35)

and hence

∆x ∆p ≥ ~

2
. (36)

The ~ has entered into the moments’ constraint through the action of the ⋆-product
CZ01.

More general choices of g likewise lead to diverse expectations’ inequalities in phase

space; e.g., in 6-dimensional phase space, the uncertainty for g = a + bLx + cLy requires

l(l + 1) ≥ m(m+ 1), and hence l ≥ m, and so forthCZ01,CZ02.

For a more extensive formal discussion of moments, cf. refNO86.

0.5 Ehrenfest’s Theorem

Moyal’s equation (10),

∂f

∂t
= {{H, f}} , (37)

serves to prove Ehrenfest’s theorem for expectation values.

For any phase-space function k(x, p) with no explicit time-dependence,

d〈k〉
dt

=

∫

dxdp
∂f

∂t
k

=
1

i~

∫

dxdp (H ⋆ f − f ⋆ H) ⋆ k

=

∫

dxdp f{{k,H}} = 〈{{k,H}}〉 . (38)

(Any convective time-dependence,
∫

dxdp (ẋ∂x (fk) + ṗ ∂p(fk)), amounts to an ignorable

surface term,
∫

dxdp (∂x(ẋfk) + ∂p(ṗfk)), by the x, p equations of motion.)

Note the ostensible sign difference between the correspondent to Heisenberg’s equation,

dk

dt
= {{k,H}} , (39)

and Moyal’s equation above. The x, p equations of motion in such a Heisenberg picture,

then, reduce to the classical ones of Hamilton, ẋ = ∂pH, ṗ = −∂xH.

Moyal Moy49 stressed that his eponymous quantum evolution equation (10) contrasts to

Liouville’s theorem for classical phase-space densities,

dfcl
dt

=
∂fcl
∂t

+ ẋ ∂xfcl + ṗ ∂pfcl = 0 . (40)
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Specifically, unlike its classical counterpart, in general, f does not flow like an incompressible

fluid in phase space.

For an arbitrary region Ω about some representative point in phase space,

Lemma 0.6

d

dt

∫

Ω
dxdp f =

∫

Ω
dxdp

(

∂f

∂t
+ ∂x(ẋf) + ∂p(ṗf)

)

=

∫

Ω
dxdp ({{H, f}} − {H, f}) 6= 0 . (41)

That is, the phase-space region does not conserve in time the number of points swarm-

ing about the representative point: points diffuse away, in general, without maintaining

the density of the quantum quasi-probability fluid; and, conversely, they are not prevented

from coming together, in contrast to deterministic flow behavior. Still, for infinite Ω en-

compassing the entire phase space, both surface terms above vanish to yield a time-invariant

normalization for the WF.

The O(~2) higher momentum derivatives of the WF present in the MB (but absent in

the PB—higher space derivatives probing nonlinearity in the potential) modify the Liouville

flow into characteristic quantum configurationsKZZ02,FBA96,ZP94.

0.6 Illustration: the Harmonic Oscillator

To illustrate the formalism on a simple prototype problem, one may look at the harmonic

oscillator. In the spirit of this picture, in fact, one can eschew solving the Schrödinger

problem and plugging the wavefunctions into (4). Instead, for H = (p2 + x2)/2 (with

m = 1, ω = 1; i.e., with
√
mω absorbed into x and into 1/p, and 1/ω into H), one may

solve (17) directly,
(

(

x+
i~

2
∂p

)2

+

(

p− i~

2
∂x

)2

− 2E

)

f(x, p) = 0. (42)

For this Hamiltonian, then, the equation has collapsed to two simple Partial Differential

Equations.

The first one, the ℑmaginary part,

(x∂p − p∂x)f = 0 , (43)

restricts f to depend on only one variable, the scalar in phase space,

z ≡ 4

~
H =

2

~
(x2 + p2) .

Thus the second one, the ℜeal part, is a simple Ordinary Differential Equation,
(

z

4
− z∂2

z − ∂z −
E

~

)

f(z) = 0. (44)

Setting f(z) = exp(−z/2)L(z) yields Laguerre’s equation,
(

z∂2
z + (1 − z)∂z +

E

~
− 1

2

)

L(z) = 0. (45)
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It is solved by Laguerre polynomials,

Ln =
1

n!
ez ∂nz (e−zzn) , (46)

for n = E/~ − 1/2 = 0, 1, 2, ..., so that the ⋆-gen-Wigner-functions areGro46

fn =
(−1)n

π~
e−2H/~ Ln

(

4H

~

)

;

L0 = 1, L1 = 1 − 4H

~
, L2 =

8H2

~2
− 8H

~
+ 1 , ... (47)

But for the Gaussian ground state, they all have zeros and go negative in some region.

x p

f

x

Figure 2. The oscillator WF for the 3rd excited state. Note the axial symmetry, the negative values, and the nodes.

Their sum provides a resolution of the identityMoy49,
∑

n

fn =
1

h
. (48)

These Wigner functions, fn, become spiky in the classical limit ~ → 0; e.g., the ground

state Gaussian f0 goes to a δ-function. Since, for given fns, 〈x2 + p2〉 = ~(2n + 1), these

become “macroscopic” for very large n = O(~−1).

Note that the energy variance, the quantum fluctuation, is

〈H ⋆ H〉 − 〈H〉2 = (〈H2〉 − 〈H〉2) − ~
2

4
,
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vanishing for all ⋆-genstates; while the naive star-less fluctuation on the right-hand side is

thus larger than that, ~
2/4, and would suggest broader dispersion, groundlessly.

(For the rest of this section, set ~ = 1, for algebraic simplicity.)

Dirac’s Hamiltonian factorization method for the alternate algebraic solution of this

same problem carries through intact, with ⋆-multiplication now supplanting operator mul-

tiplication. That is to say,

H =
1

2
(x− ip) ⋆ (x+ ip) +

1

2
. (49)

This motivates definition of raising and lowering functions (not operators)

a ≡ 1√
2
(x+ ip), a† ≡ a∗ =

1√
2
(x− ip), (50)

where

a ⋆ a† − a† ⋆ a = 1 . (51)

The annihilation functions ⋆-annihilate the ⋆-Fock vacuum,

a ⋆ f0 =
1√
2
(x+ ip) ⋆ e−(x2+p2) = 0 . (52)

Thus, the associativity of the ⋆-product permits the customary ladder spectrum

generationCFZ98. The ⋆-genstates for H ⋆ f = f ⋆ H are then

fn =
1

n!
(a†⋆)n f0 (⋆a)n . (53)

They are manifestly real, like the Gaussian ground state, and left-right symmetric. It is

easy to see they are ⋆-orthogonal for different eigenvalues. Likewise, they can be seen by

the evident algebraic normal ordering to project to themselves, since the Gaussian ground

state does, f0 ⋆ f0 = f0/h.

The corresponding coherent state WFs HKN88,Sch88,CUZ01,Har01,DG80 are likewise anal-

ogous to the conventional formulation, amounting to this ground state with a displacement

in the phase-space origin.

This type of analysis carries over well to a broader class of problemsCFZ98 with “essen-

tially isospectral” pairs of partner potentials, connected with each other through Darboux

transformations relying on Witten superpotentials W (cf. the Pöschl-Teller potentialAnt01).

It closely parallels the standard differential operator structure of the recursive technique.

That is, the pairs of related potentials and corresponding ⋆-genstate Wigner functions are

constructed recursivelyCFZ98 through ladder operations analogous to the algebraic method

outlined above for the oscillator.

Beyond such recursive potentials, examples of further simple systems where the

⋆-genvalue equations can be solved on first principles include the linear potential
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Figure 3. Section of the oscillator WF for the first excited state. Note the negative values. For this WF, 〈z〉 = 6,
where z ≡ 2(x2 + p2)/~, as in the text. On this plot, by contrast, a “classical mechanics” oscillator of energy 3~/2
would appear as a spike at a point of z = 6 (beyond the ridge at z = 3), with its phase rotating uniformly. A uniform
collection of such rotating oscillators of all phases, or a time average of one such a classical oscillator, would present
as a stationary δ-function-ring at z = 6.
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GM80,CFZ98,TZM96, the exponential interaction Liouville potentials, and their supersym-

metric Morse generalizationsCFZ98, and well-potential and δ-function limits.KW05 (Also

see Fra00,LS82,DS82,CH86,HL99,KL94,BW10).

Further systems may be handled through the Chebyshev-polynomial numerical tech-

niques of ref HMS98.

First principles phase-space solution of the Hydrogen atom is less than straightforward

and complete. The reader is referred to BFF78,Bon84,DS82,CH87 for significant partial results.

Algebraic methods of generating spectra of quantum integrable models are described in

ref CZ02.

0.7 Time Evolution

Moyal’s equation (10) is formally solved by virtue of associative combinatoric operations

completely analogous to Hilbert space quantum mechanics, through definition of a ⋆-unitary

evolution operator, a “⋆-exponential”Imr67,GLS68,BFF78 ,

U⋆(x, p; t) = e
itH/~
⋆ ≡ 1 + (it/~)H(x, p) +

(it/~)2

2!
H ⋆ H +

(it/~)3

3!
H ⋆ H ⋆H + ..., (54)

for arbitrary Hamiltonians.

The solution to Moyal’s equation, given the WF at t = 0, then, is

f(x, p; t) = U−1
⋆ (x, p; t) ⋆ f(x, p; 0) ⋆ U⋆(x, p; t). (55)

In general, just like any ⋆-function of H, the ⋆-exponential (54) resolves spectrally Bon84,

exp⋆

(

it

~
H

)

= exp⋆

(

it

~
H

)

⋆ 1 = exp⋆

(

it

~
H

)

⋆ 2π~

∑

n

fn = 2π~

∑

n

eitEn/~fn . (56)

(Of course, for t = 0, the obvious identity resolution is recovered.)

In turn, any particular ⋆-genfunction is projected out formally by
∫

dt exp⋆

(

it

~
(H − Em)

)

= (2π~)2
∑

n

δ(En − Em)fn ∝ fm , (57)

which is manifestly seen to be a ⋆-function.

For harmonic oscillator ⋆-genfunctions, the ⋆-exponential (56) is directly seen to sum to

exp⋆

(

itH

~

)

=

(

cos(
t

2
)

)−1

exp

(

2i

~
H tan(

t

2
)

)

, (58)

which is, to say, just a GaussianBM49,Imr67,BFF78 in phase spacef .

f As an application, note that the celebrated hyperbolic tangent ⋆-composition law of Gaussians follows trivially, since
these amount to ⋆-exponentials with additive time intervals, exp⋆(tf) ⋆ exp⋆(Tf) = exp⋆((t + T )f),BF F78. That is,

exp
“

−
a

~
(x2 + p2)

”

⋆ exp

„

−
b

~
(x2 + p2)

«

=
1

1 + ab
exp

„

−
a+ b

~(1 + ab)
(x2 + p2)

«

.
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Exercise. Evaluate eax⋆ ⋆ ebp⋆ . Evaluate δ(x) ⋆ δ(p). Evaluate eax⋆p⋆ .

N.B. This time-evolution ⋆-exponential (56) for the harmonic oscillator may be evaluated

alternativelyBFF78 without explicit knowledge of the individual ⋆-genfunctions fn summed

above. Instead, for (54), U(H, t) ≡ exp⋆(itH/~), Laguerre’s equation emerges again,

∂tU =
i

~
H ⋆ U = i

(

H

~
− ~

4
(∂H +H∂2

H)

)

U ,

and is readily solved by (58). One may then simply read off in (56) the fns as the Fourier-

expansion coefficients of U .

For the variables x and p, in the Heisenberg picture, the evolution equations collapse to

mere classical trajectories for the oscillator,

dx

dt
=
x ⋆ H −H ⋆ x

i~
= ∂pH = p , (59)

dp

dt
=
p ⋆ H −H ⋆ p

i~
= −∂xH = −x , (60)

where the concluding members of these two equations only hold for the oscillator, however.

Thus, for the oscillator,

x(t) = x cos t+ p sin t, p(t) = p cos t− x sin t. (61)

As a consequence, for the harmonic oscillator, the functional form of the Wigner function

is preserved along classical phase-space trajectoriesGro46,

f(x, p; t) = f(x cos t− p sin t, p cos t+ x sin t; 0). (62)

Any oscillator WF configuration rotates uniformly on the phase plane around the origin,

essentially classically, (cf. Fig. 4), even though it provides a complete quantum mechanical

descriptionGro46,BM49,W ig32,Les84,CZ99,ZC99.

Naturally, this rigid rotation in phase space preserves areas, and thus automatically

illustrates the uncertainty principle. By contrast, in general, in the conventional formulation

of quantum mechanics, this result is deprived of visualization import, or, at the very least,

simplicity: upon integration in x (or p) to yield usual marginal probability densities, the

rotation induces apparent complicated shape variations of the oscillating probability density

profile, such as wavepacket spreading (as evident in the shadow projections on the x and p

axes of Fig. 4 ), at least temporarily.

Only when (as is the case for coherent statesSch88,CUZ01,HSD95,Sam00) a Wigner function

configuration has an additional axial x−p symmetry around its own center, will it possess

an invariant profile upon this rotation, and hence a shape-invariant oscillating probability

densityZC99.

In Dirac’s interaction representation, a more complicated interaction Hamiltonian su-

perposed on the oscillator one leads to shape changes of the WF configurations placed on

the above “turntable”, and serves to generalize to scalar field theoryCZ99.
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t

p

x
Figure 4. Time evolution of generic WF configurations driven by an oscillator Hamiltonian. The t-arrow indicates the
rotation sense of x and p, and so, for fixed x and p axes, the WF shoebox configurations rotate rigidly in the opposite
direction, clockwise. (The sharp angles of the WFs in the illustration are actually unphysical, and were only chosen
to monitor their “spreading wavepacket” projections more conspicuously.) These x and p-projections (shadows) are
meant to be intensity profiles on those axes, but are expanded on the plane to aid visualization. The circular figure
portrays a coherent state (a Gaussian displaced off the origin) which projects on either axis identically at all times,
thus without shape alteration of its wavepacket through time evolution.
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0.8 Non-diagonal Wigner Functions

More generally, to represent all operators on phase-space in a selected basis, one looks

at the Wigner-correspondents of arbitrary |a〉 〈b|, referred to as non-diagonal WFs Gro46.

These enable investigation of interference phenomena and the transition amplitudes in the

formulation of quantum mechanical perturbation theory BM49,WO88,CUZ01.

Both the diagonal and the non-diagonal WFs are represented in (2), by replacing ρ

→ |ψa〉〈ψb| ,

fba(x, p) ≡
1

2π

∫

dy e−iyp
〈

x+
~

2
y

∣

∣

∣

∣

ψa

〉 〈

ψb

∣

∣

∣

∣

x− ~

2
y

〉

=
1

2π

∫

dye−iypψ∗b

(

x− ~

2
y

)

ψa

(

x+
~

2
y

)

= f∗ab(x, p)

= ψa(x) ⋆ δ(p) ⋆ ψ
∗
b (x) , (63)

(NB. The second index is acted upon on the left.) The representation on the last line is due

to Bra94 and lends itself to a more compact and elegant proof of Lemma 0.3.

Just as pure-state diagonal WFs obey a projection condition, so too do the

non-diagonals. For wave functions which are orthonormal for discrete state labels,
∫

dxψ∗a(x)ψb(x) = δab, the transition amplitude collapses to

∫

dxdp fab (x, p) = δab . (64)

To perform spectral operations analogous to those of Hilbert space, it is useful to note that

these WFs are ⋆-orthogonalFai64

(2π~) fba ⋆ fdc = δbcfda , (65)

as well as completeMoy49 for integrable functions on phase space,

(2π~)
∑

a,b

fab (x1, p1) fba (x2, p2) = δ (x1 − x2) δ (p1 − p2) . (66)

For example, for the SHO in one dimension, non-diagonal WFs are

fkn =
1√
n!k!

(a∗⋆)n f0 (⋆a)k , f0 =
1

π~
e−(x

2+p2)/~ , (67)

(cf. coherent states CUZ01,Sch88,DG80). The f0n are readily identifiableBM49,GLS68, up to a

phase-space Gaussian (f0), with the analytic Bargmann representation of wavefunctions:

Note that

(a∗⋆)n f0 = f0 (2a∗)n,

mere functions free of operators, where a∗ = a†, amounts to Bargmann’s variable z. (Further

note the limit Ln0 = 1 below.)
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Explicitly, in terms of associated Laguerre polynomials, these areGro46,BM49,Fai64

fkn =

√

k!

n!
ei(k−n) arctan(p/x) (−1)k

π~

(

x2 + p2

~/2

)(n−k)/2

Ln−kk

(

x2 + p2

~/2

)

e−(x
2+p2)/~. (68)

These SHO non-diagonal WFs are direct solutions to Fai64

H ⋆ fkn = En fkn , fkn ⋆ H = Ek fkn . (69)

The resulting energy ⋆-genvalue conditions are
(

En − 1
2

)

/~ = n, an integer; and
(

Ek − 1
2

)

/~ = k, also an integer.

The general spectral theory of WFs is covered in BFF78,FM91,Lie90,BDW99,CUZ01.

Exercise. Consider the phase-space portrayal of the simplest two-state system consisting

of equal parts of oscillator ground and first-excited states. Implement the above to evaluate

the corresponding rotating WF: (f00 + f11)/2 + ℜ(exp(−it) f01).

0.9 Stationary Perturbation Theory

Given the spectral properties summarized, the phase-space perturbation formalism is

self-contained, and it need not make reference to the parallel Hilbert-space treatment
BM49,WO88,CUZ01,SS02,MS96.

For a perturbed Hamiltonian,

H (x, p) = H0(x, p) + λ H1(x, p) , (70)

seek a formal series solution,

fn (x, p) =

∞
∑

k=0

λkf (k)
n (x, p), En =

∞
∑

k=0

λkE(k)
n , (71)

of the left-right-⋆-genvalue equations (17), H ⋆ fn = Enfn = fn ⋆ H.

Matching powers of λ in the eigenvalue equationCUZ01,

E(0)
n =

∫

dxdp f (0)
n (x, p) H0(x, p), E(1)

n =

∫

dxdp f (0)
n (x, p) H1(x, p), (72)

f (1)
n (x, p) =

∑

k 6=n

f
(0)
kn (x, p)

E
(0)
n − E

(0)
k

∫

dXdP f
(0)
nk (X,P ) H1 (X,P )

+
∑

k 6=n

f
(0)
nk (x, p)

E
(0)
n − E

(0)
k

∫

dXdP f
(0)
kn (X,P ) H1 (X,P ) . (73)

Example. Consider all polynomial perturbations of the harmonic oscillator in a unified

treatment, by choosing

H1 = eγx+δp = eγx+δp⋆ =
(

eγx ⋆ eδp
)

eiγδ/2 =
(

eδp ⋆ eγx
)

e−iγδ/2 , (74)
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to evaluate a generating function for all the first-order corrections to the energiesCUZ01,

E(1)(s) ≡
∞
∑

n=0

snE(1)
n =

∫

dxdp

∞
∑

n=0

snf (0)
n H1 , (75)

hence

E(1)
n =

1

n!

dn

dsn
E(1)(s)

∣

∣

∣

∣

s=0

. (76)

From the spectral resolution (56) and the explicit form of the ⋆-exponential of the

oscillator Hamiltonian (58) (with eit → s and E
(0)
n =

(

n+ 1
2

)

~), it follows that

∞
∑

n=0

snf (0)
n =

1

π~(1 + s)
exp

(

x2 + p2

~

s− 1

s+ 1

)

, (77)

and hence

E(1) (s) =
1

π~ (1 + s)

∫

dxdp eγx+δp exp

(

−x
2 + p2

~

1 − s

1 + s

)

=
1

1 − s
exp

(

~

4

(

γ2 + δ2
) 1 + s

1 − s

)

. (78)

E.g., specifically,

E
(1)
0 = exp

(

~

4

(

γ2 + δ2
)

)

, E
(1)
1 =

(

1 +
~

2

(

γ2 + δ2
)

)

E
(1)
0 ,

E
(1)
2 =

(

1 + ~
(

γ2 + δ2
)

+
~

2

8

(

γ2 + δ2
)2
)

E
(1)
0 , (79)

and so on. All the first order corrections to the energies are even functions of the parameters:

only even functions of x and p can contribute to first-order shifts in the harmonic oscillator

energies.

First-order corrections to the WFs may be similarly calculated using generating func-

tions for non-diagonal WFs. Higher order corrections are straightforward but tedious.

Degenerate perturbation theory also admits an autonomous formulation in phase-space,

equivalent to Hilbert space and path-integral treatments.

0.10 Propagators

Time evolution of general WFs beyond the above treatment is addressed at length in refs
BM49,Tak54,Ber75,GM80,CUZ01,BR93,BDR04,Wo82,Wo02,FM03,TW03.

A further application of the spectral techniques outlined is the computation of the WF

time-evolution operator from the propagator for wave functions, which is given as a bilinear

sum of energy eigenfunctions,

G(x,X; t) =
∑

a

ψa(x) e
−iEat/~ψ∗a(X) ≡ exp

(

iAeff (x,X; t)
)

, (80)
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as it may be thought of as an exponentiated effective action. (Henceforth in this section,

take ~ = 1).

This leads directly to a similar bilinear double sum for the WF time-transformation

kernel Moy49,

T (x, p;X,P ; t) = 2π
∑

a,b

fba(x, p) e
−i(Ea−Eb)t fab(X,P ) . (81)

Defining a “big star” operation as a ⋆-product for the upper-case (initial) phase-space

variables,

⋆ ≡ e
i~
2

(
←

∂X

→

∂ P−
←

∂ P

→

∂X) , (82)

it follows that

T (x, p;X,P ; t)⋆fdc(X,P ) =
∑

b

fbc(x, p) e
−i(Ec−Eb)t fdb(X,P ) , (83)

hence, cf. (55),
∫

dXdP T (x, p;X,P ; t)fdc(X,P ) = fdc(x, p)e
−i(Ec−Ed)t = U−1

⋆ ⋆fdc(x, p; 0)⋆U⋆ = fdc(x, p; t).

(84)

Example. For a free particle of unit mass in one dimension (plane wave), H = p2/2, WFs

propagate according to

Tfree (x, p;X,P ; t)

=
1

2π

∫

dk

∫

dq ei(k−q)x δ

(

p− 1

2
(k + q)

)

e−i(q
2−k2)t/2 e−i(k−q)X δ

(

P − 1

2
(k + q)

)

= δ (x−X − Pt) δ (p− P ) , (85)

identifiable as “classical” free motion,

f(x, p; t) = f(x− pt, p; 0) . (86)

The shape of any WF configuration (“wavepacket”) maintains its p-profile, while shearing

in x, by an amount linear in the time and p.

0.11 Canonical Transformations

Canonical transformations (x, p) 7→ (X(x, p), P (x, p)) preserve the phase-space volume

(area) element (again, take ~ = 1) through a trivial Jacobian,

dXdP = dxdp {X,P} , (87)

i.e., they preserve Poisson Brackets

{u, v}xp ≡
∂u

∂x

∂v

∂p
− ∂u

∂p

∂v

∂x
, (88)

{X,P}xp = 1, {x, p}
XP

= 1. (89)
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Upon quantization, the c-number function Hamiltonian transforms “classically”,

H(X,P ) ≡ H(x, p), like a scalar. Does the ⋆-product remain invariant under this transfor-

mation?

Yes, for linear canonical transformationsHKN88, but clearly not for general canonical

transformations. Still, things can be put right, by devising general covariant transformation

rules for the ⋆-productCFZ98: The WF transforms in comportance with Dirac’s quantum

canonical transformation theoryDir33.

In conventional quantum mechanics, for classical canonical transformations generated

by Fcl(x,X),

p =
∂Fcl(x,X)

∂x
, P = −∂Fcl(x,X)

∂X
, (90)

the energy eigenfunctions transform in a generalization of the “representation-changing”

Fourier transformDir33,

ψE(x) = NE

∫

dX eiF (x,X) ΨE(X) . (91)

(In this expression, the generating function F may contain ~ correctionsBCT82 to the clas-

sical one, in general—but for several simple quantum mechanical systems it manages not

toCG92,DG02.) HenceCFZ98, there is a transformation functional for WFs, T (x, p;X,P ),

such that

f(x, p) =

∫

dXdP T (x, p;X,P )⋆F(X,P ) =

∫

dXdP T (x, p;X,P ) F(X,P ) , (92)

where

T (x, p;X,P ) (93)

=
|N |2
2π

∫

dY dy exp

(

−iyp+ iPY − iF ∗(x− y

2
,X − Y

2
) + iF (x+

y

2
,X +

Y

2
)

)

.

Moreover, it can be shown thatCFZ98,

H(x, p) ⋆ T (x, p;X,P ) = T (x, p;X,P )⋆ H(X,P ). (94)

That is, if F satisfies a ⋆−genvalue equation, then f satisfies a ⋆-genvalue equation with

the same eigenvalue, and vice versa. This proves useful in constructing WFs for simple

systems which can be trivialized classically through canonical transformations.

A thorough discussion of MB automorphisms may start from ref BCW02. (Also see
Hie82,DKM88,GR94,DV 97,Hak99,KL99,DP01.)

Dynamical time evolution is also a canonical transformation Dir33, with the generator’s

role played by the effective action A of the previous section, incorporating quantum correc-

tions to both phases and normalizations; it propagates initial wave functions to those at a

final time.

Example. For the linear potential, with

H = p2 + x , (95)
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wave function evolution is determined by the propagator

exp (iAlin(x,X; t)) =
1√
4πit

exp

(

i (x−X)2

4t
− i (x+X) t

2
− it3

12

)

. (96)

T then evaluates to

Tlin( x, p ;X,P ; t)

=
1

2π

∫

dY dy exp

(

−iyp+ iPY − iA∗lin(x− y

2
,X − Y

2
; t) + iAlin(x+

y

2
,X +

Y

2
; t)

)

=
1

8π2t

∫

dY dy exp

(

−iyp+ iPY − it

2
(y + Y ) +

i

2t
(x−X)(y − Y )

)

=
1

2t
δ

(

p+
t

2
− x−X

2t

)

δ

(

P − t

2
− x−X

2t

)

= δ (p+ t− P ) δ
(

x− 2tp− t2 −X
)

= δ (x−X − (p+ P ) t) δ (P − p− t) . (97)

The δ-functions enforce exactly the classical motion for a mass= 1/2 particle subject

to a negative constant force of unit magnitude (acceleration = −2). Thus the WF evolves

“classically” as

f(x, p; t) = f(x− 2pt− t2, p + t ; 0). (98)

NB. Time-independence follows for f(x, p; 0) being any function of the energy variable,

since x+ p2 = x− 2pt− t2 + (p+ t)2.

The evolution kernel T propagates an arbitrary WF through justBM49

f(x, p; t) =

∫

dXdP T (x, p;X,P ; t) f(X,P ; 0) . (99)

The underlying phase-space structure, however, is more evident if one of the wave-function

propagators is given in coordinate space, and the other in momentum space. Then the

path integral expressions for the two propagators can be combined into a single phase-space

path integral. For every time increment, phase space is integrated over to produce the new

Wigner function from its immediate ancestor. The result is

T (x, p;X,P ; t) (100)

=
1

π2

∫

dx1dp1

∫

dx2dp2e
2i(x−x1)(p−p1)e−ix1p1 〈x1; t|x2; 0〉 〈p1; t|p2; 0〉∗ eix2p2e−2i(X−x2)(P−p2),

where 〈x1; t |x2; 0〉 and 〈p1; t |p2; 0〉 are the path integral expressions in coordinate space,

and in momentum space. Blending these x and p path integrals gives a genuine path

integral over phase space Ber80,DK85. For a direct connection of U⋆ to this integral, see

refSha79,Lea68,Sam00.
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0.12 The Weyl Correspondence

This section summarizes the formal bridge and equivalence of phase-space quantization to

the conventional operator formulation of quantum mechanics in Hilbert space. The Weyl

correspondence merely provides a change of representation between phase space and Hilbert

space. In itself, it does not map (commutative) classical mechanics to (non-commutative)

quantum mechanics (“quantization”), as Weyl had originally hoped. But it makes the

deformation map at the heart of quantization easier to grasp, now defined within a common

representation, and thus more intuitive.

WeylWey27 introduced an association rule mapping, invertibly, c-number phase-space

functions g(x, p) (called phase-space kernels) to operators G in a given ordering prescription.

Specifically, p 7→ p, x 7→ x, and, in general,

G(x, p) =
1

(2π)2

∫

dτdσdxdp g(x, p) exp
(

iτ(p − p) + iσ(x − x)
)

. (101)

The eponymous ordering prescription requires that an arbitrary operator, regarded as a

power series in x and p, be first ordered in a completely symmetrized expression in x and p,

by use of Heisenberg’s commutation relations, [x, p] = i~.

A term with m powers of p and n powers of x is obtained from the coefficient of τmσn

in the expansion of (τp + σx)m+n, which serves as a generating function of Weyl-ordered

polynomialsGF91. It is evident how the map yields a Weyl-ordered operator from a polyno-

mial phase-space kernel. It includes every possible ordering with multiplicity one, e.g.,

6p2x2 7−→ p2x2 + x2p2 + pxpx + px2p + xpxp + xp2x . (102)

In generalMcC32,

pmxn 7−→ 1

2n

n
∑

r=0

(

n

r

)

xrpmxn−r =
1

2m

m
∑

s=0

(

m

s

)

psxnpm−s. (103)

Phase-space constants map to the constant multiplying 1l, the identity in Hilbert space.

In this correspondence scheme, then,

h TrG =

∫

dxdp g . (104)

ConverselyDir30,Gro46,Kub64,Lea68,HOS84, the c-number phase-space kernels g(x, p) of

Weyl-ordered operators G(x, p) are specified by p 7→ p, x 7→ x; or, more precisely, by

the “Wigner map”,

g(x, p) =
~

2π

∫

dτdσ ei(τp+σx)Tr
(

e−i(τp+σx)G
)

= ~

∫

dy e−iyp
〈

x+
~

2
y

∣

∣

∣

∣

G(x, p)

∣

∣

∣

∣

x− ~

2
y

〉

, (105)

since the above trace, in the coordinate representation, reduces to
∫

dz eiτσ~/2〈z|e−iσxe−iτpG|z〉 =

∫

dzeiσ(τ~/2−z)〈z − ~τ |G|z〉. (106)
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Equivalently, the c-number integral kernel of the operator amounts toDir30,Bas48,

Lemma 0.7

〈x|G|y〉 =

∫

dp

2π~
exp

(

ip
(x− y)

~

)

g

(

x+ y

2
, p

)

.

(Exercise: For the SHO, note the standard evolution amplitude 〈x| exp(−itH/~)|0〉, so the

propagator G(x, 0; t), (80), follows by just inserting (58)∗ for g into, and evaluating this

integral.)

Thus, the density matrix |ψb〉〈ψa|/h inserted in this expressionMoy49 yields the her-

mitean generalization of the Wigner function (63) encountered,

fab(x, p) ≡
1

2π

∫

dy e−iyp
〈

x+
~

2
y

∣

∣

∣

∣

ψb

〉 〈

ψa

∣

∣

∣

∣

x− ~

2
y

〉

=
1

2π

∫

dye−iypψ∗a

(

x− ~

2
y

)

ψb

(

x+
~

2
y

)

=
1

(2π)2

∫

dτdσ 〈ψa| eiτ(p−p)+iσ(x−x) |ψb〉 = f∗ba(x, p) , (107)

where the ψa(x)s are (ortho-)normalized solutions of a Schrödinger problem. (WignerWig32

mainly considered the diagonal elements of the pure-state density matrix, denoted above as

fm ≡ fmm.)

As a consequence, matrix elements of operators, i.e., traces of them with the density

matrix, are obtained through mere phase-space integralsMoy49,Bas48,

〈ψm|G|ψn〉 =

∫

dxdp g(x, p)fmn(x, p), (108)

and thus expectation values follow for m = n, as utilized throughout in this overview.

Hence, above all,

Lemma 0.8

〈ψm| exp i(σx + τp)|ψm〉 =

∫

dxdp fm(x, p) exp i(σx+ τp), (109)

the celebrated moment-generating functionalMoy49,Bas48 of the Wigner distribution, codify-

ing the expectation values of all moments.

Products of Weyl-ordered operators are not necessarily Weyl-ordered, but may be eas-

ily reordered into unique Weyl-ordered operators through the degenerate Campbell-Baker-

Hausdorff identity. In a study of the uniqueness of the Schrödinger representation, von

NeumannNeu31 adumbrated the composition rule of kernel functions in such operator prod-

ucts, appreciating that Weyl’s correspondence was in fact a homomorphism. (Effectively,

he arrived at the Fourier space convolution representation of the star product below.)

Finally, GroenewoldGro46 neatly worked out in detail how the kernel functions (i.e. the

Wigner transforms) f and g of two operators F and G must compose to yield the kernel
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(the Wigner map image, sometimes called the “Weyl symbol”) of the product F G,

F G = 1
(2π)4

∫

dξdηdξ′dη′dx′dx′′dp′dp′′f(x′, p′)g(x′′, p′′)

× exp i(ξ(p − p′) + η(x − x′)) exp i(ξ′(p − p′′) + η′(x − x′′)) =

=
1

(2π)4

∫

dξdηdξ′dη′dx′dx′′dp′dp′′f(x′, p′)g(x′′, p′′) exp i
(

(ξ + ξ′)p + (η + η′)x
)

× exp i

(

−ξp′ − ηx′ − ξ′p′′ − η′x′′ +
~

2
(ξη′ − ηξ′)

)

. (110)

Changing integration variables to

ξ′ ≡ 2

~
(x− x′), ξ ≡ τ − 2

~
(x− x′), η′ ≡ 2

~
(p′ − p), η ≡ σ − 2

~
(p′ − p), (111)

reduces the above integral to the fundamental isomorphism,

Theorem 0.1

F G =
1

(2π)2

∫

dτdσdxdp exp i
(

τ(p − p) + σ(x − x)
)

(f ⋆ g)(x, p), (112)

where f ⋆ g is the expression (13).

Noncommutative operator multiplication Wigner-transforms to ⋆-multiplication.

The ⋆-product thus defines the transition from classical to quantum mechanics.

In fact, the failure of Weyl-ordered operators to close under multiplication may be stood

on its head Bra02, to define a Weyl-symmetrizing operator product, which is commutative

and constitutes the Weyl transform of fg instead of the noncommutative f⋆g. (For example,

2x ⋆ p = 2xp+ i~ 7→ 2xp = xp + px + i~.

The classical piece of 2x ⋆ p maps to the Weyl-symmetrization of the operator product,

2xp 7→ xp + px.) One may then solve for the PB in terms of the MB, and, through the

Weyl correspondence, reformulate Classical Mechanics in Hilbert space as a deformation of

Quantum Mechanics, instead of the other way around Bra02!

Arbitrary operators G(x, p) consisting of operators x and p, in various orderings, but

with the same classical limit, could be imagined rearranged by use of Heisenberg commuta-

tions to canonical completely symmetrized Weyl-ordered forms, in general with O(~) terms

generated in the process.

Trivially, each one might then be inverse-transformed uniquely to its Weyl-

correspondent c-number kernel function g in phase space. (However, in practiceKub64, there

is the above more direct Wigner transform formula (105), which bypasses any need for

an actual explicit rearrangement. Since operator products amount to convolutions of such

matrix-element integral kernels, 〈x|G|y〉, explicit reordering issues can be systematically

avoided.)
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Thus, operators differing from each other by different orderings of their xs and ps Wigner-

map to kernel functions g coinciding with each other at O(~0), but different at O(~), in

general. Hence, in phase-space quantization, a survey of all alternate operator orderings in

a problem with such ambiguities amounts to a survey of the “quantum correction” O(~)

pieces of the respective kernel functions, i.e. the Wigner transforms of those operators, and

their accounting is often systematized and expedited.

Choice-of-ordering problems then reduce to purely ⋆-product algebraic ones, as the

resulting preferred orderings are specified through particular deformations in the c-number

kernel expressions resulting from the particular solution in phase spaceCZ02.

Exercise. Evaluate the ⋆-genvalues λ of Π(x, p) ≡ h
2 δ(x)δ(p). (One might think that spiky

functions like this have no place in phase-space quantization, but they do: one may chek that

this is but the phase-space kernel, i.e. the Wigner transform, of the parity operatorRoy77,
∫

dx |−x〉〈x| = h
2(2π)2

∫

dτdσ exp(iτp+ iσx). So, then, what is Π⋆Π?) Hint on Π⋆f = λf :

For the SHO basis (47), what is Π ⋆ f0(x, p)? And what is Π ⋆ f1(x, p)? At x = 0 = p for

these, how does one see the necessity of the overall alternating signs in that basis?

0.13 Alternate Rules of Association

The Weyl correspondence rule (101) is not unique: there are a host of alternate equivalent

association rules which specify corresponding representations. All these representations

with equivalent formalisms are typified by characteristic quasi-distribution functions and ⋆-

products, all systematically inter-convertible among themselves. They have been surveyed

comparatively and organized in Lee95,BJ84, on the basis of seminal classification work by

Cohen Coh66,Coh76. Like different coordinate transformations, they may be favored by virtue

of their different characteristic properties in varying applications.

For example, instead of the symmetric operator exp(iτp + iσx) underlying the Weyl

transform, one might posit, instead Lee95,HOS84, antistandard ordering,

exp(iτp) exp(iσx) = exp(iτp + iσx) w(τ, σ), (113)

with w = exp(i~τσ/2), which specifies the Kirkwood-Rihaczek prescriptionKir33; or else

standard ordering (momenta to the right), w = exp(−i~τσ/2) instead on the right-hand-

side of the above, for the Mehta prescription, also utilized by MoyalMoy49,Y v46; or their (real)

average, w = cos(~τσ/2) for the older Rivier prescription Ter37; or normal and antinormal

orderings for the Glauber-Sudarshan prescriptions, generalizing to w = exp(~

4 (τ2 + σ2))

for the Husimi prescription Hus40,Tak89 which is underlain by coherent states; or w =

sin(~τσ/2)/(~τσ/2), for the Born-Jordan prescription; and so on.

The corresponding quasi-distribution functions in each representation can be obtained

systematically as convolution transforms of each otherCoh76,Lee95,HOS84; and, likewise, the
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kernel function observables are convolution “dressings” of each other, as are their ⋆-products
Dun88,AW70,Ber75.

Example. For instance, the (normalized) Husimi distribution follows from a “Gaussian

smoothing” or “Gauss transform” invertible linear conversion mapWO87,Tak89,Lee95,AMP09

of the WF,

f
H

= T (f) = exp

(

~

4
(∂2
x + ∂2

p)

)

f (114)

=
1

π~

∫

dx′dp′ exp

(

−(x′ − x)2 + (p′ − p)2)

~

)

f(x′, p′),

and likewise for the observables. (So, e.g., the oscillator hamiltonian now becomes HH =

(p2 + x2 + ~)/2.) Thus, for the same operators G, in this alternate ordering,

〈G〉 =

∫

dxdp g(x, p) exp

(

−~

4
(∂2
x + ∂2

p)

)

f
H

=

∫

dxdp g
H
e~(
←

∂ x

→

∂ x+
←

∂ p

→

∂ p)/2 f
H
.(115)

That is, expectation values of observables now entail equivalence conversion dress-

ings of the respective kernel functions and a corresponding isomorph ⋆-product
Ba79,OW81,V or89,Tak89,Zac00,

⊛ = exp

(

~

2
(
←
∂ x
→
∂ x +

←
∂ p
→
∂ p)

)

⋆ = exp

(

~

2
(
←
∂ x −i

←
∂ p)(

→
∂ x +i

→
∂ p)

)

,

cf. (120) below. Evidently, however, this one now cannot be simply dropped inside integrals,

quite unlike the case of the WF (16).

For this reason, quantum distributions such as this Husimi distribution (which is actually
deB67,Car76,OW81,Ste80 positive semi-definiteg) cannot be automatically thought of as bona-

fide probability distributions, in some contrast to the WF.

This is often dramatized as the failure of the Husimi distribution fH to yield the correct

x- or p-marginal probabilities, upon integration by p or x, respectivelyOW81,HOS84. Since

phase-space integrals are thus complicated by conversion dressing convolutions, they pre-

clude direct implementation of the Schwarz inequality and the standard inequality-based

moment-constraining techniques of probability theory, as well as routine completeness- and

orthonormality-based functional-analytic operations.

Ignoring the above equivalence dressings and, instead, simply treating the Husimi dis-

tribution as an ordinary probability distribution in evaluating expectation values, never-

theless, results in loss of quantum information—effectively “coarse-graining” (filtering) to

a semi-classical limit, and thereby increasing the relevant entropyBra94.

Similar caveats also apply to more recent symplectic tomographic representations
MMT96,MMM01,Leo97, which are also positive semi-definite, but also do not quite constitute

conventional probability distributions.

gThis is evident from the factorization of the constituent integrals of fH(0, 0) to a complex norm squared, or, more
directly, the footnote of Section (0.4) since the Gaussian is f0 for the harmonic oscillator; and hence at all points in
phase space.
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Exercise. One may work out Moyal’s inter-relationsMoy49,Coh66,Coh76 between the Weyl-

ordering kernel (Wigner transform) functions and the standard-ordering correspondents;

as well as the respective dressing relations between the proper ⋆-productsLee95, in sys-

tematic analogy to the foregoing example for the Husimi prescription. The weight w =

exp(−i~τσ/2) mentioned dictates a dressing of kernels, gs = T (g) ≡ exp(−i~∂x∂p/2) g(x, p),
and of ⋆-products by (120) below.

Further abstracting the Weyl-map functional of Section (0.12), for generic Hilbert-space

variables z and phase-space variables z, the Weyl map compacts to an integral kernelKub64,

G(z) =
∫

dz∆(z, z)g(z), and the inverse (Wigner) map to g(z) = hTr(∆(z, z)G(z)). Here,

hTr(∆(z, z)∆(z, z′)) = δ2(z − z′),
∫

dz∆(z, z) =
∫

dz∆(z, z) = 1l, and hTr∆ = hTr∆ = 1.

The ⋆-product is thus a convolution in the integral representation, cf. (13),

Lemma 0.9

f ⋆ g =

∫

dz′dz′′f(z′)g(z′′) hTr
(

∆(z, z)∆(z, z′)∆(z, z′′)
)

.

The dressing of these functionals then presents as ∆s(z, z) = T−1(z)∆(z, z), so that both

prescriptions yield the same operator G, when gs(z) = T (z)g(z) and ∆s = T∆.

Thus, more abstractly, the corresponding integral kernel for ⊛ amounts to just

hTr(T (z)∆(z, z)T−1(z′)∆(z, z′)T−1(z′′)∆(z, z′′)).

0.14 The Groenewold–van Hove Theorem and

the Uniqueness of MBs and ⋆-products

Groenewold’s correspondence principle theoremGro46 (to which van Hove’s extension to

all association rules is often attachedvH51,AB65,Ar83) enunciates that, in general, there is

no invertible linear map from all functions of phase space f(x, p), g(x, p), ..., to hermitean

operators in Hilbert space Q(f), Q(g), ..., such that the PB structure is preserved,

Q({f, g}) =
1

i~

[

Q(f),Q(g)
]

, (116)

as envisioned in Dirac’s heuristics.Dir25

Instead, the Weyl correspondence map (101) from functions to ordered operators,

W(f) ≡ 1

(2π)2

∫

dτdσdxdp f (x, p) exp(iτ(p − p) + iσ(x − x)), (117)

determines the ⋆-product in (112) of Thm (0.1), W(f ⋆ g) = W(f) W(g), and thus the

Moyal Bracket Lie algebra,

W({{f, g}}) =
1

i~

[

W(f),W(g)
]

. (118)

It is the MB, then, instead of the PB, which maps invertibly to the quantum commutator.
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That is to say, the “deformation” involved in phase-space quantization is nontrivial: the

quantum (observable) functions, in general, need not coincide with the classical onesGro46,

and often involve O(~) corrections, as extensively illustrated in, e.g., refs CZ02,DS02,CH86;

also see Got99.

For example, as was already discussed, the Wigner transform of the square of the angular

momentum L · L turns out to be L2 − 3~
2/2, significantly for the ground-state Bohr orbit

She59,DS82,DS02.

Groenewold’s early celebrated counterexample noted that the classically vanishing PB

expression

{x3, p3} +
1

12
{{p2, x3}, {x2, p3}} = 0

is anomalous in implementing Dirac’s heuristic proposal to substitute commutators of

Q(x),Q(p), ..., for PBs upon quantization: Indeed, this substitution, or the equivalent sub-

stitution of MBs for PBs, yields a Groenewold anomaly, −3~
2, for this specific expression.

Exercise. Beyond Hilbert space, in phase space, check that the standard linear operator

realization V(f) ≡ i~(∂xf ∂p − ∂pf ∂x) satisfies (116). But is it invertible? N.B.

V({x, p}) = 0.

An alternate abstract operator realization of the above MB Lie algebra in phase space

(as opposed to the Hilbert space one, W(f)) linearly isFFZ89,CFZm98

K(f) = f ⋆ . (119)

Realized on a toroidal phase space, upon a formal identification ~ 7→ 2π/N , this realization

of the MB Lie algebra leads to the Lie algebra of SU(N) FFZ89, by means of Sylvester’s

clock-and-shift matricesSyl82. For generic ~, it may be thought of as a generalization of

SU(N) for continuous N . This allows for taking the limit N → ∞, to thus contract to the

PB algebra.

Essentially (up to isomorphism), the MB algebra is the unique (Lie) one-

parameter deformation (expansion) of the Poisson Bracket algebraV ey75,BFF78,FLS76,Ar83

F le90,deW83,BCG97,TD97, a uniqueness extending to the (associative) star product.

Isomorphism allows for dressing transformations of the variables (kernel functions and

WFs, as in section 0.13 on alternate orderings), through linear maps f 7→ T (f), which leads

to cohomologically equivalent star-product variants, i.e. Ba79,V or89,BFF78,

T (f ⋆ g) = T (f) ⊛ T (g). (120)

The ⋆-MB algebra is isomorphic to the algebra of ⊛-MB.

Computational features of ⋆-products are addressed in refs
BFF78,Han84,RO92,Zac00,EGV 89,V o78,An97,Bra94.
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0.15 Omitted Miscellany

Phase-space quantization extends in several interesting directions which are not covered in

such a summary introduction.

The systematic generalization of the ⋆-product to arbitrary non-flat Poisson manifolds
Kon97, is a culmination of extensions to general symplectic and Kähler geometriesFed94

Mor86,CGR90,Kis01, and varied symplectic contexts Ber75,Rie89,Bor96,KL92,RT00 ,
Xu98,CPP02,BGL01.

For further work on curved spaces, cf. refAPW02,BF81,PT99. For extensive reviews of

mathematical issues, cf. refFol89,Hor79,Wo98,AW70. For a connection to the theory of modular

forms, see ref Raj02.

For WFs on discrete phase spaces (finite-state systems), see, among others,

refsWoo87,KP94,OBB95,ACW98,RA99,RG00,BHP02,MPS02.

Spin is treated in ref Str57,Kut72,BGR91,V G89,AW00; and forays into a relativistic formula-

tion in refLSU02 (also see refCS75,Ran66).

Inclusion of Electromagnetic fields and gauge invariance is treated in refs
Kub64,Mue99,BGR91,LF94,LF01,JV S87,ZC99,KO00. Subtleties of Berry’s phase in phase space are

addressed in ref Sam00.

Applications of the phase-space quantum picture include efficient computation of ζ-

function regularization determinantsKT07.
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Selected Papers

0.16 Brief Historical Outline

The decisive contributors to the development of the formulation are Hermann Weyl (1885-

1955), Eugene Wigner (1902-1995), Hilbrand Groenewold (1910-1996), and Jose Moyal

(1910-1998). The bulk of the theory is implicit in Groenewold’s and Moyal’s seminal papers.

But this has been a fitful story of emerging connections and chains of ever sharper

reformulations. Confidence in the autonomy of the formulation accreted slowly. As a

result, attribution of critical milestones cannot avoid subjectivity: it cannot automatically

highlight merely the earliest occurrence of a construct, unless that has also been conclusive

enough to yield an “indefinite stay against confusion” about the logical structure of the

formulation.

H Weyl (1927)Wey27 introduces the correspondence of “Weyl-ordered” operators to

phase-space (c-number) kernel functions. The correspondence is based on Weyl’s formula-

tion of the Heisenberg group, appreciated through a discrete QM application of Sylvester’s

(1883)Syl82 clock and shift matrices. The correspondence is proposed as a general quanti-

zation prescription, unsuccessfully, since it fails, e.g., with angular momentum squared.

J von Neumann (1931)Neu31, expatiates on a Fourier transform version of the ⋆-product,

in a technical aside off an analysis of the uniqueness of Schrödinger’s representation, based on

Weyl’s Heisenberg group formulation. This then effectively promotes Weyl’s correspondence

rule to full isomorphism between Weyl-ordered operator multiplication and ⋆-convolution

of kernel functions. Nevertheless, this result is not properly appreciated in von Neumann’s

celebrated own book on the Foundations of QM.

E Wigner (1932)Wig32 introduces the eponymous phase-space distribution function con-

trolling quantum mechanical diffusive flow in phase space. It notes the negative values, and

specifies the time evolution of this function and applies it to quantum statistical mechanics.

(Actually, Dirac (1930)Dir30 has already considered a formally identical construct, and an

implicit Weyl correspondence, for the electron density in a multi-electron Thomas-Fermi

atom, but interprets negative values as a failure of the semiclassical approximation, and

crucially hesitates about the full quantum object.)

H Groenewold (1946)Gro46, a seminal but inadequately appreciated paper, is based on

Groenewold’s thesis work. It achieves full understanding of the Weyl correspondence as

an invertible transform, rather than as a consistent quantization rule. It articulates and

recognizes the WF as the phase-space (Weyl) kernel of the density matrix. It reinvents

and streamlines von Neumann’s construct into the standard ⋆-product, in a systematic

exploration of the isomorphism between Weyl-ordered operator products and their kernel

function compositions. It thus demonstrates how Poisson Brackets contrast crucially to

quantum commutators—“Groenewold’s Theorem”. By way of illustration, it further works

out the harmonic oscillator WF.

J Moyal (1949)Moy49 enunciates a grand synthesis: It establishes an independent formu-
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lation of quantum mechanics in phase space. It systematically studies all expectation values

of Weyl-ordered operators, and identifies the Fourier transform of their moment-generating

function (their characteristic function) to the Wigner Function. It further interprets the

subtlety of the “negative probability” formalism and reconciles it with the uncertainty prin-

ciple and the diffusion of the probability fluid. Not least, it recasts the time evolution of the

Wigner Function through a deformation of the Poisson Bracket into the Moyal Bracket (the

commutator of ⋆-products, i.e., the Wigner transform of the Heisenberg commutator), and

thus opens up the way for a systematic study of the semiclassical limit. Before publication,

Dirac contrasts this work favorably to his own ideas on functional integration, in Bohr’s

FestschriftDir45, despite private reservations and lengthy arguments with Moyal. Various

subsequent scattered observations of French investigators on the statistical approachY v46,

as well as Moyal’s, are collected in J Bass (1948)Bas48, which further stretches to hydrody-

namics.

M Bartlett and J Moyal (1949) BM49 applies this language to calculate propagators and

transition probabilities for oscillators perturbed by time-dependent potentials.

T Takabayasi (1954)Tak54 investigates the fundamental projective normalization condi-

tion for pure state Wigner functions, and exploits Groenewold’s link to the conventional

density matrix formulation. It further illuminates the diffusion of wavepackets.

G Baker (1958)Bak58 (Baker’s thesis paper) envisions the logical autonomy of the formu-

lation, sustained by the projective normalization condition as a basic postulate. It resolves

measurement subtleties in the correspondence principle and appreciates the significance of

the anticommutator of the ⋆-product as well, thus shifting emphasis to the ⋆-product itself,

over and above its commutator.

D Fairlie (1964)Fai64 (also see refs Kun67,Coh76,Dah83,Bas48) explores the time-independent

counterpart to Moyal’s evolution equation, which involves the ⋆-product, beyond mere

Moyal Bracket equations, and derives (instead of postulating) the projective orthonormal-

ity conditions for the resulting Wigner functions. These now allow for a unique and full

solution of the quantum system, in principle (without any reference to the conventional

Hilbert-space formulation). Autonomy of the formulation is fully recognized.

R Kubo (1964)Kub64 elegantly reviews, in modern notation, the representation change

between Hilbert space and phase space—although in ostensible ignorance of Weyl’s and

Groenewold’s specific papers. It applies the phase-space picture to the description of elec-

trons in a uniform magnetic field, initiating gauge-invariant formulations and pioneering

“noncommutative geometry” applications to diamagnetism and the Hall effect.

N Cartwright (1976)Car76 notes that the WF smoothed by a phase-space Gaussian as

wide or wider than the minimum uncertainty packet is positive-semidefinite. Actually, the

result goes further back to at least de Bruijn (1967)deB67 and Iagolnitzer (1969)Iag69 , if not

Husimi (1940)Hus40.

M Berry (1977)Ber77 elucidates the subtleties of the semiclassical limit, ergodicity, in-
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tegrability, and the singularity structure of Wigner function evolution. Complementary

results are featured in Voros (1976-78)V o78.

F Bayen, M Flato, C Fronsdal, A Lichnerowicz, and D Sternheimer (1978)BFF78 ana-

lyzes systematically the deformation structure and the uniqueness of the formulation, with

special emphasis on spectral theory, and consolidates it mathematically. (Also see Berezin
Ber75.) It provides explicit illustrative solutions to standard problems and utilizes influential

technical tools, such as the ⋆-exponential (already known in Imr67,GLS68).

A Royer (1977)Roy77 interprets WFs as the expectation value of the operators effecting

reflections in phase space. (Further see refs Kub64,Gro76,BV 94.)

G Garćıa-Calderón and M Moshinsky (1980)GM80 implements the transition from

Hilbert space to phase space to extend classical propagators and canonical transforma-

tions to quantum ones in phase space. (The most conclusive work to date is ref BCW02.

Further see HKN88,Hie82,DKM88,CFZ98,DV 97,GR94,Hak99,KL99,DP01.)

J Dahl and M Springborg (1982)DS82 initiates a thorough treatment of the hydrogen and

other simple atoms in phase space, albeit not from first principles—the WFs are evaluated

in terms of Schrödinger wave-functions.

M De Wilde and P Lecomte (1983)deW83 consolidates the deformation theory of ⋆-

products and MBs on general real symplectic manifolds, analyzes their cohomology struc-

ture, and confirms the absence of obstructions.

M Hillery, R O’Connell, M Scully, and E Wigner (1984)HOS84 has done yeoman service

to the physics community as the classic introduction to phase-space quantization and the

Wigner function.

Y Kim and E Wigner (1990)KW90 is a classic pedagogical discussion of the spread of

wavepackets in phase space, uncertainty-preserving transformations, coherent and squeezed

states.

B Fedosov (1994)Fed94 initiates an influential geometrical construction of the ⋆-product

on all symplectic manifolds.

T Curtright, D Fairlie, and C Zachos (1998)CFZ98 illustrates more directly the equiv-

alence of the time-independent ⋆-genvalue problem to the Hilbert space formulation, and

hence its logical autonomy; formulates Darboux isospectral systems in phase space; works

out the covariant transformation rule for general nonlinear canonical transformations (with

reliance on the classic work of P Dirac (1933)Dir33); and thus furnishes explicit solutions

of practical problems on first principles, without recourse to the Hilbert space formulation.

Efficient techniques for perturbation theory are based on generating functions for complete

sets of Wigner functions in T Curtright, T Uematsu, and C Zachos (2001)CUZ01. A self-

contained derivation of the uncertainty principle in phase space is given in T Curtright and

C Zachos (2001)CZ01.

M Hug, C Menke, and W Schleich (1998)HMS98 introduce and exemplify techniques for

numerical solution of ⋆-equations on a basis of Chebyshev polynomials.
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JVS87. J Javanainen, S Varró and O Serimaa, Phys Rev A35 (1987) 2791-2805;

ibid A33 (1986) 2913-2927

JG93. K Jensen and A Ganguly, J Appl Phys 73 (1993) 4409-4427

JN90. J Jensen and Q Niu, Phys Rev A42 (1990) 2513-2519

JY98. A Jevicki and T Yoneya, Nucl Phys B535 (1998) 335

JD99. A Joshi and H-T Dung, Mod Phys Lett B13 (1999) 143-152

KO00. M Karasev and T Osborn, Jou Math Phys 43 (2002) 756-788 [quant-ph/0002041];

a: World Scientific Copyrighted Material Version of September 15, 2011 45



J Phys A37 (2004) 2345-2363 [quant-ph/0311053]

KP94. P Kasperkovitz and M Peev, Ann Phys (NY) 230 (1994) 21-51

KZZ02. Z Karkuszewski, J Zakrzewski, and W Zurek, Phys Rev A65 (2002) 042113;

Z Karkuszewski, C Jarzynski, and W Zurek Phys Rev Lett 89 (2002) 170405

KT07. B Kaynak and T Turgut, J Math Phys 48 (2007) 113501

KJ99. C Kiefer and E Joos, in Quantum Future, P Blanchard and A Jadczyk, eds (Springer-

Verlag, Berlin, 1999) pp 105-128 [quant-ph/9803052];
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